Designing Tables Is Not Easy

Problem in Real World

Tables in RDBM

Entity-Relationship (ER) Model

Problem → ER Model → Tables

An object-oriented approach
A visual representation of the design – ER Diagram
Easily converted to relational model

Example: Problem Description

- Student
 - id, name, address
- Department
 - name
- Classes
 - code, name, quarter, section number
- Class offerings and enrollment

Example: ER Diagram

Entity-Relationship Model

CS422 Principles of Database Systems

Chengyu Sun
California State University, Los Angeles

Entity Set and Attributes

- Entity Set is similar to class in an OO language
- Attributes are the properties of an entity set
 - Similar to the class fields in an OO language
 - Must have simple values like numbers or strings, i.e. cannot be collection or composite type
Keys

- A key is an attribute or a set of attributes that uniquely identify an entity in an entity set.
- Each entity set must have a key.
- If there are multiple keys, choose one of them as the primary key.

Types of Relationships

- Many-to-Many
- Many-to-One / One-to-Many
- One-to-One

Many-to-Many Relationship

- Each entity in E₁ can be related to many entities in E₂.
- Each entity in E₂ can be related to many entities in E₁.

Many-to-One Relationship

- Each entity in E₁ can be related to one entity in E₂.
- Each entity in E₂ can be related to many entities in E₁.

One-to-One Relationship

- Each entity in E₁ can be related to one entity in E₂.
- Each entity in E₂ can be related to one entity in E₁.

Relationship Type Examples

- Students and classes??
- Departments and classes??
- Person and Favorite movie??
A Closer Look at “One” and “Many”

- One
 - 0 or 1
 - Exactly 1 ➔ Referential Integrity
- Many
 - 0..N
 - 1..N
 - N..M (Example??)

Referential Integrity in ER Diagram

- An circular arrow is used to indicate “Exactly 1”

One vs. Exactly One

- Both lead to foreign key constraint in SQL
 - One: foreign key + NULL
 - Exactly one: foreign key + NOT NULL
- It’s usually not too important to distinguish the two in ER design

Example: Grades

- Store the grades the students received for their classes
- A grade is a single letter A, B, C, D, or F

Relationship Attributes ...

- Sometimes it’s useful to attach an attribute to a relationship.
Some variations of ER model does not allow relationships to have attributes.

If something needs an attribute, it probably should be an entity set.

Example: More about Grades

Make Grades an entity set.

Multiway Relationship

Why there is an arrow pointing to Grades?

“Arrows” in Multiway Relationships

In multiway relationships, an arrow points to an entity set E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E.

Convert Multiway Relationship to Binary Relationship
Example: Employees and Supervisors

- Each employee has a supervisor
- A supervisor is an employee

Roles

- An entity set may appear in the same relationship more than once.
- Label the edges with names called Roles

Example: Players and Teams

- What's the key for Players?

Weak Entity Set

- Entity set E is said to be weak if in order to identify entities of E uniquely, we need to follow one or more many-one relationships from E and include the key of the related entities from the connected entity sets.

Weak Entity Sets in ER Diagram

- The key of a weak entity set consists of its own key attributes and the key attributes of the supporting set

From Weak to Strong

- We can usually create unique IDs for entity sets
Summary of ER Diagram

- **Entity Set**
 - Attributes, key
 - Weak entity set
- **Relationship**
 - Many-to-Many, Many-to-One, One-to-One
 - Attributes
 - Multiway relationship
 - Subclass

Relational Model

- Proposed by Edgar F. Codd in early 1970's
- Data is stored in tables (a.k.a. relations)
- All major database systems these day are relational

<table>
<thead>
<tr>
<th>student_id</th>
<th>first_name</th>
<th>last_name</th>
<th>birthday</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000001</td>
<td>John</td>
<td>Doe</td>
<td>1970-1-1</td>
</tr>
<tr>
<td>2000002</td>
<td>Jane</td>
<td>Doe</td>
<td>1971-1-1</td>
</tr>
<tr>
<td>2000003</td>
<td>Tom</td>
<td>Smith</td>
<td>1962-2-2</td>
</tr>
</tbody>
</table>

About Relational Model

- Attributes must be of simple type
- No order among attributes
- No order among records

Table (Relation)

- Attributes (fields, columns)
 - id
 - name

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>John</td>
</tr>
<tr>
<td>1001</td>
<td>Jane</td>
</tr>
</tbody>
</table>

Table and Database Schema

- **Table schema**
 - Name of the table, and the names and types of the attributes
 - E.g. `students(id:integer, name:string)`
 or just `students(id, name)`
- **Database schema**
 - Schemas of all the tables in the database
Basic Rules of ER to Relational Conversion

- A entity set is converted to a table
- A many-to-many relationship is also converted to a table, including
 - Its own attributes
 - Key attributes from the associated entity sets
- A many-to-one relationship is merged into the “many” side with a foreign key to the “one” side

Conversion Example: ER Diagram

Conversion Example: Relational Schema

Students(id, name, address)
Departments(name)
Classes(code, name, quarter, section, department_name)
Takes(student_id, code, quarter, section)

More Conversion Examples

Special Cases of Conversion

- One-to-One relationship
- Multiway relationship
- Weak entity set
- Subclass

Converting One-to-One Relationship ...
... Converting One-to-One Relationship

Which one of the following makes more sense??

Faculty(id, name, chair_of_department)
Departments(id, name)

or

Faculty(id, name)
Departments(id, name, department_chair)

Converting Multiway Relationship

Should this relationship be treated as many-to-many or many-to-one??

Converting Weak Entity Set ...

The table for a weak entity set includes its complete key as well as its own non-key attributes
A supporting relationship is redundant and yields no relation

Converting Subclass ...

Object-oriented approach
- One table per class
- Each entity belongs to exact one table

ER approach
- One table per class
- Each entity may appear in multiple tables

NULL approach
- One table per class hierarchy
Object-Oriented Approach

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>cin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>John</td>
<td></td>
</tr>
</tbody>
</table>

Users

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>cin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Jane</td>
<td>212345678</td>
</tr>
</tbody>
</table>

Students

ER Approach

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>cin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>John</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>Jane</td>
<td></td>
</tr>
</tbody>
</table>

Users

<table>
<thead>
<tr>
<th>user_id</th>
<th>cin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>212345678</td>
</tr>
</tbody>
</table>

Students

NULL Approach ...

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>cin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>John</td>
<td>NULL</td>
</tr>
<tr>
<td>1001</td>
<td>Jane</td>
<td>212345678</td>
</tr>
</tbody>
</table>

Users

... NULL Approach

Discriminator field

<table>
<thead>
<tr>
<th>id</th>
<th>user_type</th>
<th>name</th>
<th>cin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>staff</td>
<td>John</td>
<td>NULL</td>
</tr>
<tr>
<td>1001</td>
<td>student</td>
<td>Jane</td>
<td>212345678</td>
</tr>
</tbody>
</table>

Users

Comparison of Subclass Conversion Approaches

- Constraints and data integrity
- Query performance

Q1: find the number of users
Q2: find the number of students

Summary of ER to Relational Conversion

- Basic rules
 - Entity set
 - Many-to-many relationship
 - Many-to-one relationship
- Special cases
 - One-to-one relationship
 - Multiway relationship
 - Weak entity set
 - Subclass
Common Problems in ER Diagram

- Student (id, name, addr)
- Class (id, code)
- Take (student_id, class_id)
- Offer (id, name, department_id)

Common Mistakes of ER Design

- ER diagram
 - Missing arrows
 - Missing keys
 - Redundant foreign keys
- ER to relational conversion
 - Missing tables for many-to-many relationships

Variations of ER Model

- Rule differences
 - Relationships cannot have attributes
 - Anything that have attributes should be an entity set
 - Simplifies ER diagram
 - No multiway relationship
 - Better mapping to OO languages
- Notational differences
 - Old school style
 - Tool friendly style

Old School ER Diagram

- Highlight three distinct components of a diagram
- Difficult to draw
- Can look messy even for a relatively simple schema

Tool Friendly ER Diagram

- Relationships cannot have attributes, and no multiway relationships
- Easier to draw, especially using OO design tools
- Looks cleaner

Design Example 1: Restaurant

- Terminal ID: NC2HHRY
- Merchant ID: 4992414532566624

- VISA
 - AUTH:00559B
 - Inv:000032
- Sale
 - Batch: 0000244
 - Date: JUN 17, 06 Time: 18:44
 - AUTH:00559B
- Base: $36.70
- Tip:
- Total: $40.70
- Chengyu Sun
Design Example 2: Folders and Files

C:\
 \WINNT
 \Document and Settings
 \Program Files
 \yysun
 \database material
 \web material
 file1 file2
 file3 file4

Design Example 3: Price That Changes

What if we want to model price that changes??

$ Price of a product X
 time