CS422 Principles of Database Systems
Multivalued Dependency
Chengyu Sun
California State University, Los Angeles

Motivational Example

<table>
<thead>
<tr>
<th>drinker</th>
<th>address</th>
<th>beerLiked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sue</td>
<td>123 Main St.</td>
<td>Bud</td>
</tr>
<tr>
<td>Sue</td>
<td>321 State St.</td>
<td>Pete's Ale</td>
</tr>
</tbody>
</table>

Motivational Example Questions:
◆ FD?? Keys??
◆ 3NF?? BCNF??
◆ Is this a good design??

A New Form of Redundancy

<table>
<thead>
<tr>
<th>drinker</th>
<th>address</th>
<th>beerLiked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sue</td>
<td>123 Main St.</td>
<td>Bud</td>
</tr>
<tr>
<td>Sue</td>
<td>321 State St.</td>
<td>Pete's Ale</td>
</tr>
<tr>
<td>Sue</td>
<td>321 State St.</td>
<td>Bud</td>
</tr>
<tr>
<td>Sue</td>
<td>123 Main St.</td>
<td>Pete's Ale</td>
</tr>
</tbody>
</table>

A New Form of Redundancy

Any combination of address and beerLiked for Sue is a valid tuple

Multivalued Dependency (MVD)

A Multivalued Dependency (MVD) $A \quad B$ is an assertion that if two tuples of a relation agree on all the attributes of A, then their components in the set of attributes B may be swapped, and the result will be two tuples that are also in the relation.

In the drinkers example:

$A?? B?? C=R-AB??$

$?? ??$

A Couple of Observations about MVD

◆ MVD characterizes the case where one relation tries to represents more than one many-to-many relationships.
◆ MVD vs. FD (why it's called multivalued dependency)

Trivial MVD

$A \quad B$

Trivial MVD

◆ MVD is trivial if
 $B \subseteq A$, or
 $A \cup B = R$
Proof by Chase

- Given a set of FDs and MVDs D, does another dependency d (FD or MVD) follow from D?
- Procedure
 - Start with the hypotheses of d, and treat them as "seed" tuples in a relation
 - Apply the given dependencies in D repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof; otherwise we have a counter-example

From Jun Yang's lecture notes at http://www.cs.duke.edu/~junyang

Proof by Chase Example

- In $R(A, B, C, D)$, does A B and B C imply A C?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
</tbody>
</table>

Have

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
</tbody>
</table>

Need

From Jun Yang's lecture notes at http://www.cs.duke.edu/~junyang

Union and Decomposition

- Union: if A B and A C, then A B C
 - Proof??
- Decomposition rule no longer holds
 - Counter-example??

From Jun Yang's lecture notes at http://www.cs.duke.edu/~junyang
Fourth Normal Form (4NF)

- A relation R is in 4NF if for every nontrivial MVD \(A \rightarrow\rightarrow B \), \(A \) is a super key.

Decompose into 4NF

- Find a 4NF violation \(A \rightarrow B \)
- Decompose R into:
 - \(R_1 = A \cup B \)
 - \(R_2 = (R - AB) \cup A \)
- Repeat until all relations are in 4NF

4NF Decomposition Example

- Drinkers(name, addr, beerLiked, favBeer)
 - FD?? Key??
 - MVD??

4NF Decomposition vs. BCNF Decomposition

- In 4NF decomposition we do not compute \(A^+ \)
 - \(A^+ \) does not make sense for MVD
 - \(A \) \((R \cap A) \) and \(A \cap A \)
- Inferring MVDs for the projections are very difficult
 - However, we can usually get by using the rules of transitivity, complementation, and intersection.

Exercise: Prove the Intersection Rule

- If \(A \rightarrow B \) and \(A \rightarrow C \), then \(A \rightarrow B \cap C \)

4NF vs. BCNF

- Why??