Functional Dependency

A functional dependency on relation R is the assertion that when two tuples agree on attributes $\{A_1, \ldots, A_n\}$, they must also agree on attribute B.

$\{A_1, \ldots, A_n\} \rightarrow B$, or $\{A_1, \ldots, A_n\}$ functionally determine B

Example

- Drinkers(name, addr, beersLiked, manf, favBeer).
- Reasonable FD’s to assert:
 1. name \rightarrow addr
 2. name \rightarrow favBeer
 3. beersLiked \rightarrow manf

Example Data

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>beersLiked</th>
<th>manf</th>
<th>favBeer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spock</td>
<td>Wick</td>
<td>Entourage</td>
<td>End</td>
<td>Wick</td>
</tr>
<tr>
<td>Because name \rightarrow addr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Because beersLiked \rightarrow favBeer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FD’s With Multiple Attributes

- No need for FD’s with > 1 attribute on right.
 - But sometimes convenient to combine FD’s as a shorthand.
 - Example: name \rightarrow addr and name \rightarrow favBeer become name \rightarrow addr favBeer
- > 1 attribute on left may be essential.
 - Example: bar beer \rightarrow price

Keys of Relations

- $\{A_1, \ldots, A_n\}$ is a key of R if
 - $\{A_1, \ldots, A_n\}$ functionally determines all attributes of R
 - No proper subset of $\{A_1, \ldots, A_n\}$ functionally determines all attributes of R
- Superkey
- Note:
 - A relation may have multiple keys
 - A key may have multiple attributes
 - Minimal AI = Minimum
 - ER keys \neq relational keys
Example

- Consider relation Drinkers(name, addr, beersLiked, manf, favBeer).
- \{name, beersLiked\} is a superkey because together these attributes determine all the other attributes.
 - name -> addr favBeer
 - beersLiked -> manf

Example, Cont.

- \{name, beersLiked\} is a **key** because neither \{name\} nor \{beersLiked\} is a superkey.
 - name doesn’t -> manf; beersLiked doesn’t -> addr.
- In this example, there are no other keys, but lots of superkeys.
 - Any superset of \{name, beersLiked\}.

Discovering FDs and Keys

- **Obvious ones**
 - SSN, VIN, StudentID ...
- **Less obvious ones**
 - (hour,room) -> class
 - (playerID, year) -> teamID
- **Keys from ER**
 - Entity Set
 - Binary relationships
 - Multi-way relationships

Trivial Functional Dependency

- **FD**: \{A₁,…,Aₙ\} → \{B₁,…,Bₘ\}
- **FD is trivial** if all B’s are in \textbf{A}
- **FD is nontrivial** if at least one B is not in \textbf{A}
- **FD is completely nontrivial** if no B is in \textbf{A}

Armstrong’s Axioms

- **Reflexivity**
 - If \{B₁,…,Bₘ\} ⊆ \{A₁,…,Aₙ\}, then \textbf{A} → \textbf{B}
- **Transitivity**
 - If \{A₁,…,Aₙ\} → \{B₁,…,Bₘ\}, and \{B₁,…,Bₘ\} → \{C₁,…,Cₙ\}, then \textbf{A} → \textbf{C}
- **Augmentation**
 - If \{A₁,…,Aₙ\} → \{B₁,…,Bₘ\}, then \{A₁,…,Aₙ,C₁,…,Cₙ\} → \{B₁,…,Bₘ,C₁,…,Cₙ\}

Closure of Attributes

- **Given**
 - a set of attributes \textbf{A}
 - a set of functional dependencies \textbf{S}
- **Closure of \textbf{A} under \textbf{S}, \textbf{A}⁺**, is the set of all possible attributes that are functionally determined by \textbf{A} based on the functional dependencies inferable from \textbf{S}
Simple Closure Example

- R: \{A,B,C\}
- S: \{A\rightarrow B, B\rightarrow C\}
- \{A\}^+ ??
- \{B\}^+ ??
- \{C\}^+ ??

Computing A+

- Initialize \(A^+ = A\)
- Search in S for \(B\rightarrow C\) where
 - \(B \subseteq A^+\)
 - \(C \notin A^+\)
- Add C to \(A^+\)
- Repeat until nothing can be added to \(A^+\)

Computing \(A^+\) Example

- R: \{A,B,C,D,E,F\}
- S: \{AB\rightarrow C, BC\rightarrow AD, D\rightarrow E, CF \rightarrow B\}
- \{A,B\}^+ ??
- Is \{A,B\} a key ??

Correctness of the Closure Algorithm

- If \(B \subseteq A^+\), then \(A\rightarrow B\)
 - Proof by induction
- If \(A\rightarrow B\), then \(B \subseteq A^+\)
 - Proof by contradiction – if such B exists, that’s because \(A\rightarrow B\) cannot be inferred from S
 - If \(A\rightarrow B\) is inferable from S, then all relations that satisfy S also satisfy \(A\rightarrow B\)
 - A counter-example can be constructed where it satisfies S but not \(A\rightarrow B\)

Projection

- We often want to break one relation into two or more relations
 - E.g. breaks \((A,B,C,D)\) into \((A,B,C)\) and \((C,D)\)
- The resulting relations can be considered as projections of the original relation
- Given a set of FDs for the original relation, what can we say about the FDs of the projected relations?

Compute Functional Dependencies After Projection

- Let the new relation be \(R’\), compute the closures of all subset’s of \(R’\)’s attributes, and exclude the FD’s that involves the attributes that are projected out.
 - No need to compute the closures of the empty set and the full set
 - If \(A^+\) is already the set of all attributes, no need to compute the closures of A’s superset
Example

\[R: (A, B, C, D), \text{ S: } (A \rightarrow B, B \rightarrow C, C \rightarrow D) \]
\[R': (A, C, D) \]

\[A \rightarrow C, A \rightarrow D, C \rightarrow D: \text{ basis} \]
\[A \rightarrow C, C \rightarrow D: \text{ minimal basis} \]