The Data

- **Fact (Measure)**
 - Sales

- **Dimensions**
 - **Month:** 1, 2, 3, 4
 - **City:** LA, NY, LV, MI
 - **Item:** 1, 2, 3

<table>
<thead>
<tr>
<th>Item</th>
<th>Month</th>
<th>City</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan</td>
<td>LA</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Feb</td>
<td>LA</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>Jan</td>
<td>NY</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>Mar</td>
<td>NY</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>Mar</td>
<td>LV</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Apr</td>
<td>MI</td>
<td>150</td>
</tr>
</tbody>
</table>

The Multidimensional Model

<table>
<thead>
<tr>
<th>Item</th>
<th>Month</th>
<th>City</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan</td>
<td>LA</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Feb</td>
<td>LA</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>Jan</td>
<td>NY</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>Mar</td>
<td>NY</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>Mar</td>
<td>LV</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Apr</td>
<td>MI</td>
<td>150</td>
</tr>
</tbody>
</table>

A Cuboid

- **3-D cuboid {item, month, city}**

Data Cube

- **A lattice of cuboids**

More Cuboids

<table>
<thead>
<tr>
<th>Item, Month</th>
<th>{month}</th>
<th>{}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>
About the Data Cube

- # of cuboids??
- # of cells in each cuboid??
- How do a few records turn into so much data??

Observations and Solutions

- Observations
 - Curse of Dimensionality
 - Sparsity
 - Closed coverage

- Solutions
 - Partial computation of data cube
 - Iceberg Cube
 - Shell Cube
 - Cube compression
 - Closed Cube

Cell

- A cell in an n-dimensional cube:
 \((a_1, a_2, ..., a_n, \text{measure})\)
- \(a_i\) is either a value or *
- A cell is a \(m\)-dimensional cell if exactly \(m\) values in \((a_1, a_2, ..., a_n)\) are not *
- Base cell: \(m=n\)
- Aggregate cell: \(m<n\)

Cell Examples

- C1: (*,*,LA,150)
- C2: (2,*,LA,50)
- C3: (1,Jan,LA,100)
- C4: (1,*,NY,230)
- C5: (*,*,NY,230)

Ancestor and Descendent Cells

- An \(i\)-D cell \(a=(a_1, a_2, ..., a_n, \text{measure}_a)\) is an ancestor of a \(j\)-D cell
 \(b=(b_1, b_2, ..., b_n, \text{measure}_b)\) iff
 - \(i<j\), and
 - For \(1 \leq m \leq n\), \(a_m=b_m\) whenever \(a_m\neq *\)
 - \(a\) is a parent of \(b\) (and \(b\) a child of \(a\))
 - \(a\) is an ancestor of \(b\), and
 - \(j=i+1\)

Ancestor and Descendent Examples

- C1: (*,*,LA,150)
- C2: (2,*,*,LA,50)
- C3: (1,*,*,LA,100)
- C4: (1,Jan,*,NY,230)
- C5: (*,*,*,NY,230)
Closed Cell

A cell \(c \) is a closed cell if there is no descendent of \(c \) that has the same measure as \(c \).

Closed Cell Examples

Which of the following are closed cells?
- \(C1: (*,*,LA,150) \)
- \(C2: (2,*,*,LA,50) \)
- \(C3: (1,Jan,LA,100) \)
- \(C4: (1,*,NY,230) \)
- \(C5: (*,*,NY,230) \)

Closed Cube

A closed cube is a data cube consisting of only closed cells.

What's the closed cube of the following data?

<table>
<thead>
<tr>
<th>item</th>
<th>month</th>
<th>city</th>
<th>sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan</td>
<td>LA</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Feb</td>
<td>LA</td>
<td>50</td>
</tr>
</tbody>
</table>

Query a Closed Cube

- \((1,Jan,LA,??) \)
- \((1,*,LA,??) \)
- \((1,*,NY,??) \)
- \((2,*,*,??) \)
- \((*,*,*,??) \)

Full Cube Computation Example – Dimensions

<table>
<thead>
<tr>
<th>item (a)</th>
<th>month (b)</th>
<th>city (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c2</td>
</tr>
<tr>
<td>a3</td>
<td>b3</td>
<td>c3</td>
</tr>
<tr>
<td>a3</td>
<td>b4</td>
<td>c4</td>
</tr>
</tbody>
</table>

Cell examples:
- \((a_2,b_1,c_1,100)\)
- \((a_2,*,c_1,??)\)
- \((*,b_2,*,??)\)

Full Cube Computation Example – Data Cube
Full Cube Computation

- Approach 1: one cuboid (i.e. group-by) at a time
 - 2^n scans
- Approach 2: single scan??

Naïve Single Scan ...

- Create all cube cells in memory and initialize them to 0
- Read in each record and update corresponding cells

... Naïve Single Scan

- For example, after reading (a1,b1,c1,100), the following cells will be updated:
 - (a1,b1,*), (a1,*,c1), (*,b1,c1)
 - (a1,*,*), (*,b1,*), (*,*,c1)
 - (*,*,*)

Problem with naïve single scan??

Reduce Memory Requirement
- Order Matters

- Cells need to be kept in memory
 - Read unsorted: 52
 - Read sorted: ??

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td></td>
<td>b1</td>
<td>c1</td>
<td>100</td>
</tr>
<tr>
<td>a1</td>
<td>b1</td>
<td></td>
<td>c2</td>
<td>30</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td></td>
<td>c3</td>
<td>100</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c1</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>a3</td>
<td>b3</td>
<td>c4</td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

Multiway Array Aggregation

- Use a multidimensional array store the base cuboid
- Partition the array into chunks such that each chunk can fit into the memory
- Read in each chunk in certain order to compute the aggregates

MAA Example – Data

- Three dimensions
 - A: cardinality=40, partitions=4
 - B: cardinality=400, partitions=4
 - C: cardinality=4000, partitions=4
MAA Example – 3D to 2D

- To compute all the 2D cells, which of the ordering of the chunks is the best?
 - Sort by a, b, c
 - Sort by b, a, c
 - Sort by c, b, a

Iceberg Cubes

- Data cubes that contain only cells with aggregates greater than a minimum threshold (minimum threshold support, or minimum support)

The Apriori Property

- If a cell does not satisfy minimum support, then no descendant of the cell can satisfy the minimum support
- Antimonotonic aggregation functions
 - E.g. count, sum
- Non-antimonotonic aggregation functions
 - E.g. avg

BUC

- Bottom-Up Construction
- An algorithm to compute iceberg cubes with antimonotonic measures
- It’s actually top-down in our view of the lattice of cuboids

BUC Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>a3</td>
<td>b1</td>
<td>c1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>a3</td>
<td>b2</td>
<td>c1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c1</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

- Compute an iceberg cube with \(\text{sum} > 5 \)

BUC Outline ...

- Aggregate all the input records

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>a3</td>
<td>b1</td>
<td>c1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>a3</td>
<td>b2</td>
<td>c1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c1</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

\[\Rightarrow (*,*,32) \]
... BUC Outline ...

- Partition the input records on the distinct values of the next dimension

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>c₁</td>
<td>5</td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>c₁</td>
<td>10</td>
</tr>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>c₂</td>
<td>3</td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>c₁</td>
<td>6</td>
</tr>
<tr>
<td>a₁</td>
<td>b₂</td>
<td>c₁</td>
<td>4</td>
</tr>
<tr>
<td>a₂</td>
<td>b₂</td>
<td>c₁</td>
<td>4</td>
</tr>
</tbody>
</table>

- If a partition satisfy the iceberg condition, recursively call BUC using this partition as input

\[
\begin{align*}
A & \quad B & \quad C & \quad \text{Sum} \\
\hline
a_1 & b_1 & c_1 & 5 \\
a_2 & b_1 & c_1 & 10 \\
a_1 & b_2 & c_1 & 3 \\
a_2 & b_1 & c_2 & 4 \\
a_1 & b_2 & c_1 & 4 \\
\end{align*}
\]

\[
(a_\mu^*, *, 12)
\]

BUC (Bottom-Up Construction)

\[
\text{BUC} \left(\text{input}, \text{dim} \right)
\]

- Aggregates
 - \((*, *, 32)\)
 - \((*, *, 12)\)
 - \((a_\mu^*, *, 2)\)
 - \((a_\mu^*, *, 7)\)
 - \((a_\mu^*, *, 13)\)
 - \((a_\mu^*, *, 20)\)
 - \((*, *, 21)\)
 - \((*, *, 14)\)
 - \((*, *, *)\)

BUC Example

- Construct an Iceberg cube with \(\text{sum} > 5\)

A Few Optimizations in BUC

- Apriori pruning
- Dimension ordering
- Single record partition
Problems of Iceberg Cubes

- May still be too large
- Minimum support is hard to determine
- Incremental updates require re-computation of the whole cube

Cube Shells

- Observation: most OLAP operations are performed on a small number of dimensions at a time
- A cube shell of a data cube consists of the cuboids up to a certain dimension
 - E.g. all cuboids with 3 dimensions or less in a 60-dimension data cube

Problems with Cube Shells

- They may still be too large
 - E.g. how many cuboids in a 3-D shell of a 60-D data cube??
- They can’t be used to answer queries like
 \[(\text{location}, \text{product type}, \text{supplier}, 2004, ?)\]

Shell Fragments

- Compute only parts of a cube shell – shell fragments
- Answer queries using pre-computed or dynamically computed data

Shell Fragment Example

<table>
<thead>
<tr>
<th>id</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a_1</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
<td>e_1</td>
</tr>
<tr>
<td>2</td>
<td>a_2</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
<td>e_2</td>
</tr>
<tr>
<td>3</td>
<td>a_3</td>
<td>b_3</td>
<td>c_3</td>
<td>d_3</td>
<td>e_3</td>
</tr>
<tr>
<td>4</td>
<td>a_4</td>
<td>b_4</td>
<td>c_4</td>
<td>d_4</td>
<td>e_4</td>
</tr>
<tr>
<td>5</td>
<td>a_5</td>
<td>b_5</td>
<td>c_5</td>
<td>d_5</td>
<td>e_5</td>
</tr>
</tbody>
</table>

Shell Fragments Construction (1)

- Partition the dimension into non-overlapping groups – fragments
 \[(a,b,c,d,e) \Rightarrow (a,b,c) \text{ and } (d,e)\]
Shell Fragments Construction

(2)

- Scan the base cuboid and construct an inverted index for each attribute

<table>
<thead>
<tr>
<th>Attribute value</th>
<th>TID list</th>
<th>List size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>(1,2,3)</td>
<td>3</td>
</tr>
<tr>
<td>(a_2)</td>
<td>(4,5)</td>
<td>2</td>
</tr>
<tr>
<td>(a_3)</td>
<td>(1,4,5)</td>
<td>3</td>
</tr>
<tr>
<td>(b_1)</td>
<td>(2,3)</td>
<td>2</td>
</tr>
<tr>
<td>(b_2)</td>
<td>(1,2,3,4,5)</td>
<td>5</td>
</tr>
<tr>
<td>(d_1)</td>
<td>(1,3,4,5)</td>
<td>4</td>
</tr>
<tr>
<td>(d_2)</td>
<td>(2)</td>
<td>1</td>
</tr>
<tr>
<td>(e_1)</td>
<td>(1,2)</td>
<td>2</td>
</tr>
<tr>
<td>(e_2)</td>
<td>(3,4)</td>
<td>2</td>
</tr>
<tr>
<td>(e_3)</td>
<td>(5)</td>
<td>1</td>
</tr>
</tbody>
</table>

Shell Fragments Construction

(3) ...

- Compute the full /local/ data cube (except the local apex cuboid) for each fragment
 - Vs. Cube shell??
- Record an inverted index for each cell in the cuboids

\[(a,b,c) \to a, b, c, ab, ac, bc, abc \]

\[(d,e) \to d, e, de \]

... Shell Fragment Construction (3) ...

ab cuboid

<table>
<thead>
<tr>
<th>Cell</th>
<th>Intersection</th>
<th>TID</th>
<th>List Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1b_2)</td>
<td>(1,2,3) ∩ (1,4,5)</td>
<td>(1)</td>
<td>1</td>
</tr>
<tr>
<td>(a_1b_3)</td>
<td>(1,2,3) ∩ (2,3)</td>
<td>(2,3)</td>
<td>2</td>
</tr>
<tr>
<td>(a_2b_3)</td>
<td>(4,5) ∩ (1,4,5)</td>
<td>(4,5)</td>
<td>2</td>
</tr>
<tr>
<td>(a_2b_5)</td>
<td>(4,5) ∩ (2,3)</td>
<td>()</td>
<td>0</td>
</tr>
</tbody>
</table>

- Inverted indexes are built as the cell aggregates are computed
- Apriori property can be used to prune some computation

Query Cube Fragments – Point Query

- Point query: all dimensions are instantiated with either a value or *
- Examples:
 - \((a_1, b_2, c_1, d_2, e_1, ??)\)
 - \((a_1, b_2, c_1, d_2, *, ??)\)
 - \((*, b_2, c_1, d_2, *, ??)\)

Answering Point Queries

\[\{(a_1, b_2, c_1, d_2, e_1)\} \cap \{2,3\} \cap \{2\}\]

Answering Point Queries

\[\{(a_1, b_2, c_1, d_2, e_1)\} \cap \{2,3\} \cap \{2\}\]

Answering Point Queries

\[\{(a_1, b_2, c_1, d_2, e_1)\} \cap \{2,3\} \cap \{2\}\]

Answering Point Queries

\[\{(a_1, b_2, c_1, d_2, e_1)\} \cap \{2,3\} \cap \{2\}\]

Answering Point Queries

\[\{(a_1, b_2, c_1, d_2, e_1)\} \cap \{2,3\} \cap \{2\}\]
Query Cube Fragments – Subcube Query

- Subcube query: at least one of the dimensions is inquired (i.e. a group-by attribute)
- Example:

\[(a, b_2, c_1, *, e, ?) \]

2-D data cube on \(a \) and \(e \)

Answering Subcube Queries

\[(a, b_2, c_1, *, e, ?) \]

\[a_1: (1,2,3) \cap (2,3) \cap e_1: (1,2) \]
\[a_2: (4,5) \]
\[e_1: (3,4) \]
\[e_2: (5) \]

Base cuboid of \(a e \)

\[(a_1, e_1) (a_2, e_2) (a_3, e_3) (a_4, e_4) (a_5, e_5) \]

Full cube computation

Data cube on \(a \) and \(e \)

OLAP Storage Types

- Relational OLAP (ROLAP)
- Multidimensional OLAP (MOLAP)
- Hybrid OLAP (HOLAP)

A ROLAP Data Store

- Summary fact tables

<table>
<thead>
<tr>
<th>RID</th>
<th>Item</th>
<th>Day</th>
<th>Month</th>
<th>Quarter</th>
<th>Year</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>TV</td>
<td>15</td>
<td>10</td>
<td>Q4</td>
<td>2003</td>
<td>250</td>
</tr>
<tr>
<td>1002</td>
<td>TV</td>
<td>23</td>
<td>10</td>
<td>Q4</td>
<td>2003</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>5001</td>
<td>TV</td>
<td>all</td>
<td>10</td>
<td>Q4</td>
<td>2003</td>
<td>45,786</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>***</td>
</tr>
</tbody>
</table>

Summary

- Data cube
 - Cuboid
- Closed cube
- Full cube computation
 - Multiway Array Aggregation
- Iceberg cube
 - BUC
- Cube shell fragments
 - Construction
 - Query
- OLAP storage types

Readings

- Textbook Chapter 4.1 except 4.1.4