CS522 Advanced Database Systems
Classification: Introduction to Support Vector Machine

Chengyu Sun
California State University, Los Angeles

Support Vector Machine (SVM)

Find a hyperplane (decision boundary) that will separate the data.

Which Boundary Is Better?

Maximum Margin Hyperplane

Maximum margin hyperplane (MMH) minimizes the worst-case generalization error.

Linear SVM ...

- Binary classification
- Record: \(\{x_1, x_2, \ldots, x_n y\} \)
 - Attribute values: \(X = (x_1, x_2, \ldots, x_n) \)
 - Class label: \(y \in \{1, -1\} \)
- Decision boundary: \(w \cdot x + b = 0 \)
- Classification
 - \(y = 1 \) if \(w \cdot x + b > 0 \)
 - \(y = -1 \) if \(w \cdot x + b < 0 \)

... Linear SVM

Margin: \(\frac{2}{\|w\|^2} = \frac{2}{\sqrt{w_1^2 + w_2^2 + \cdots + w_k^2}} \)
SVM Training Example

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>R3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>R5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

R1: \(w_1 + b \geq 1\)
R2: \(w_1 + w_2 + b \leq -1\)
R3: \(w_3 + b \geq 1\)
R4: \(w_1 + w_3 + b \leq -1\)
R5: \(b \leq -1\)

Training Linear SVM

- Find \(W\) that satisfies the inequalities and maximize the margin \(\frac{2}{||W||}\)
- Constrained (convex) quadratic optimization problem
- Solvable by numerical methods such as quadratic programming

See Chapter 5.5 of Introduction to Data Mining by Tan, Steinbach, and Kumar

Decision Boundary of Linear SVM

\[(\sum_{i=1}^{N} A_i y_i X_i \cdot X) + b = 0 \]

\((X_i, y_i)\) are training records that satisfy \(y_i(W \cdot X_i + b) = 1\), i.e. **support vectors**

Introduce a Slack Variable \(\xi\)

\[W \cdot X_i + b \geq 1 \quad \text{if } y_i = 1 \]
\[W \cdot X_i + b \leq -1 \quad \text{if } y_i = -1 \]

\[W \cdot X_i + b \geq 1 - \xi_i \quad \text{if } y_i = 1 \]
\[W \cdot X_i + b \leq -1 + \xi_i \quad \text{if } y_i = -1 \]
Revise the Objective Function

\[f(W) = \frac{\|W\|^2}{2} + C \left(\sum_{i=1}^{k} \xi_i \right) \]

\(\xi \) and \(k \) are user specified parameters.

Non-linear Decision Boundary

Non-linear Decision Boundary in 2D space:

\((x_1 - 1)^2 + (x_2 - 1)^2 - 1 = 0\)

Linear Decision Boundary in 4D space:

\[x_1' = x_1 \]
\[x_2' = x_2 \]
\[x_3' = x_3 \]
\[x_4' = x_4 \]

Linear Decision Boundary in 4D space:

\[x_1' - 2x_2' + x_3' + 2x_4' + 1 = 0 \]

Problems of Transformation

\(\checkmark \) We don’t know the non-linear decision boundary (so we don’t know how to do the transformation)

\(\checkmark \) Computation becomes more costly with more dimensions

Transformation Example

Non-linear Decision Boundary in 2D space:

\((x_1 - 1)^2 + (x_2 - 1)^2 - 1 = 0\)

Linear Decision Boundary in 4D space:

\[x_1' - 2x_2' + x_3' + 2x_4' + 1 = 0 \]

Kernel Function to the Rescue

\(\checkmark \) Training records only appear in the optimization process in the form of dot product \(\phi(x_i) \cdot \phi(x_j) \)

\(\checkmark \) \(\phi \) is the transformation function

\(\checkmark \) Kernel function \(K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) \)

\(\checkmark \) So we can do the computation in the original space without even knowing what the transformation function is

Kernel Functions

- Polynomial kernel of degree \(h \):
 \[K(x_i, x_j) = (x_i \cdot x_j + 1)^h \]

- Gaussian radial basis function kernel:
 \[K(x_i, x_j) = e^{-K(x_i - x_j)^2} \]

- Sigmoid kernel:
 \[K(x_i, x_j) = \tanh(\alpha x_i \cdot x_j - \delta) \]
Kernel Functions and SVM Classifiers

- Use of different kernel functions result in different classifiers
- There’s no golden rule to determine which kernel function is better
- The accuracy difference by using different kernel functions is usually not significant in practice

LIBSVM

- LIBSVM: a Library for Support Vector Machines by Chih-Chung Chang and Chih-Jen Lin
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Multiclass Classification with Binary Classifier

- Train a number of binary classifiers, each solving a binary classification problem
- Combine the results to solve the multiclass classification problem

The One-Against-Rest (1-r) Approach

- For k classes \(\{c_1, c_2, \ldots, c_k\} \), train k binary classifiers \(M_i \), each classifies \(\{c_i, \neg c_i\} \)
 - A positive classification by \(M_i \) gives one vote to \(c_i \)
 - A negative classification by \(M_i \) gives one vote to every class other than \(c_i \)

1-r Example

- Three classes \(c_1, c_2, \) and \(c_3 \)
- Three classifiers \(M_1, M_2, \) and \(M_3 \)
- Classify record \(r \)??

<table>
<thead>
<tr>
<th>Case 1:</th>
<th>Case 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1) (M_2) (M_3)</td>
<td>(M_1) (M_2) (M_3)</td>
</tr>
<tr>
<td>(c_1) (\neg c_2) (\neg c_3)</td>
<td>(c_1) (\neg c_2) (c_3)</td>
</tr>
</tbody>
</table>

The One-Against-One (1-1) Approach

- For k classes \(\{c_1, c_2, \ldots, c_k\} \), train \(k(k-1)/2 \) binary classifiers, each classifies \(\{c_i, c_j\} \)
1-1 Example

- Three classes c1, c2, and c3
- Three classifiers M1, M2, and M3
- Classify record r??

Case 1:

\[
\begin{array}{ccc}
M_1 & M_2 & M_3 \\
\{c_1,c_2\} & \{c_1,c_3\} & \{c_2,c_3\} \\
c_1 & c_1 & c_3
\end{array}
\]

Case 2:

\[
\begin{array}{ccc}
M_1 & M_2 & M_3 \\
\{c_1,c_2\} & \{c_1,c_3\} & \{c_2,c_3\} \\
c_1 & c_3 & c_2
\end{array}
\]

Error-Correcting Output Coding (ECOC)

- Encode each class label with a n-bit code word
- Train n binary classifiers, one for each bit
- The predicted class is the one whose codeword is the closest in Hamming distance to the classifiers’ output

Error-Correcting Output Coding (ECOC) Example

<table>
<thead>
<tr>
<th>Class</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>c_2</td>
<td>0 0 0 0 1 1</td>
</tr>
<tr>
<td>c_3</td>
<td>0 0 1 1 0 0</td>
</tr>
<tr>
<td>c_4</td>
<td>0 1 0 1 0 0</td>
</tr>
</tbody>
</table>

- Suppose the classifiers’ output: 0 1 1 1 1 1, what’s the predicted class??

About ECOC

- If \(d \) is the minimum distance between any pair of code words, ECOC can correct up to \(\lfloor (d-1)/2 \rfloor \) errors
- There are many algorithms in coding theory to generate n-bit code words with given Hamming distance
- For multiclass classification, column-wise separation is also important

Readings

- Textbook Chapter 6.7