Recommendation Systems

- Predict items a user may be interested in based on information about the user and the items
- An effective way to help people cope with information overload
- Examples: Amazon, Netflix, Tivo, ...

So How Can We Do It?

- The content based approach
- The user feedback based approach

Collaborative Filtering

- Rate items based on the ratings of other users who have similar taste as you

Problem Definitions

- Prediction
 - Given: a user and k items
 - Return: predicted rating for each item
- Recommendation
 - Given: a user
 - Return: k items from the database with the highest predicted rating

Basic Assumptions

- Items are evaluated by users explicitly or implicitly
 - Ratings, reviews
 - Purchases, browsing behaviors
 - ...
- We may map explicit and implicit evaluations to a rating scale, e.g. 1-5.
Heuristic

- People who agreed in the past are likely to agree in the future

Problem Formulation

- User-Item Matrix

<table>
<thead>
<tr>
<th>Item</th>
<th>Ken</th>
<th>Lee</th>
<th>Meg</th>
<th>Nan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>??</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

So what would be Ken’s rating for Item 6??

Solving the Problem

- Intuition: Ken’s rating for Item 6 is likely to be high
 - Ken’s ratings are similar to Meg’s
 - Ken’s ratings are opposite of Lee’s
- Develop the algorithm
 1. Quantify rating similarity
 2. Calculate the predicted rating

Similarity Measure

- Pearson Correlation Coefficient
 - A measure of linear correlation of two random variables

Predict the Rating

- The predicted rating \(\hat{r}_{x,i} \) should be a function of
 - The past ratings of user \(x \)
 - The ratings of other users for item \(i \), weighted by their similarity to user \(x \)

Pearson Correlation Coefficient

- Let \(x \) and \(y \) be two users, and \(r_{x,i} \) be the rating of item \(i \) by user \(x \)
 \[
 w_{x,y} = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} = \frac{\sum (r_{x,i} - \bar{r}_x)(r_{y,i} - \bar{r}_y)}{\sqrt{\sum (r_{x,i} - \bar{r}_x)^2 \sum (r_{y,i} - \bar{r}_y)^2}}
 \]

So what is \(w_{Ken,bot} \)? What’s the range of \(w_{ij} \)?
Predicted Rating

- $p_{u,i}$ is the predicted rating of item i by user u.

$$p_{u,i} = \frac{\sum (r_{u,i} - \bar{r}_u) \times w_{x,u}}{\sum w_{x,u}}$$

So what is $p_{u,n}$? ??

Other Similarity Measures ...

- Spearman Correlation
 - Uses ranks instead of raw rating scores
- Cosine similarity
- Mean squared difference
- Entropy-based
- ...

Variations and Optimizations

- Similarity measure
- Significance weighting
- Item rating variance
- Neighborhood selection
- Combine neighborhood ratings

Rest of the page is not fully visible in the image

Significance Weighting

- Weight users in addition to the similarity measure

$$w = \begin{cases}
1 & n \geq 50 \\
\frac{n}{50} & n < 50
\end{cases}$$

where n is the number of items rated by both users.

Item Rating Variance

- Some items are more telling about tastes than others
 - E.g. "Sleepless in Seattle" is more telling about taste than "Titanic"
 - Give more weight to items with high variance in ratings
Neighborhood Selection
- Select a subset of users for better performance and accuracy
 - Correlation threshold
 - Best n neighbors

Combine Neighborhood Ratings
- Deviation from mean
- Weighted average
- Weighted average of z-scores

 \[\text{Mean absolute deviation: } \frac{1}{n} \sum \left| r - \bar{r} \right| \]

 \[\text{Standardized measurement (z-score): } z_i = \frac{r_i - \bar{r}}{s} \]

Algorithm Quality Metrics
- Coverage – percentage of items for which the system can produce a prediction
- Accuracy
 - Statistical metrics
 - Mean Absolute Error (MAE)
 - Decision-support metrics
- Efficiency
 - Throughput – number of recommendations per second

And The Winners Are
- Similarity measure
 - Pearson Correlation
 - Spearman Correlation
- Significance weighting
- Neighborhood selection
 - Best n neighbors with n=20
- Combine neighborhood ratings
- Deviation from mean

Other Recommendation Algorithms
- Combine collaborative and content-based filtering
- Item-item collaborative filtering
- Bayesian networks
- ...

Some Libraries
- COFE – http://eecs.oregonstate.edu/iis/CoFE/
References