Recommendation Systems

- Predict items a user may be interested in based on information about the user and the items
- An effective way to help people cope with information overload
- Examples: Amazon, Netflix, Tivo, ...

So How Can We Do It?

- The content based approach
 - E.g. full text search results
- The user feedback based approach
 - E.g. rating
- Which one is better?? Any room for improvement??

Collaborative Filtering

- Rate items based on the ratings of other users who have similar taste as you

Problem Definitions

- Prediction
 - Given: a user and k items
 - Return: predicted rating for each item
- Recommendation
 - Given: a user
 - Return: k items from the database with the highest predicted rating

Basic Assumptions

- Items are evaluated by users explicitly or implicitly
 - Ratings, reviews
 - Purchases, browsing behaviors
 - ...
- We may map explicit and implicit evaluations to a rating scale, e.g. 1-5.
Heuristic

People who agreed in the past are likely to agree in the future.

Problem Formulation

User-Item Matrix

<table>
<thead>
<tr>
<th>Item</th>
<th>Ken</th>
<th>Lee</th>
<th>Meg</th>
<th>Nan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>??</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

So what would be Ken's rating for Item 6??

Pearson Correlation Coefficient

Let x and y be two users, and $r_{x,i}$ be the rating of item i by user x.

$$w_{x,y} = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} = \frac{\sum (r_{x,i} - \bar{r}_x)(r_{y,i} - \bar{r}_y)}{\sqrt{\sum (r_{x,i} - \bar{r}_x)^2} \sqrt{\sum (r_{y,i} - \bar{r}_y)^2}}$$

So what is $w_{ken,lee}$??

Predicted Rating

$p_{x,i}$ is the predicted rating of item i by user x.

$$p_{x,i} = \bar{r}_x + \frac{\sum (r_{x,i} - \bar{r}_x) \times w_{x,y}}{\sum |w_{x,y}|}$$

So what is $p_{ken,6}$??

Algorithm Quality Metrics

- Coverage – percentage of items for which the system can produce a prediction
- Accuracy
 - Mean Absolute Error (MAE)
 - Decision-support metrics
- Efficiency
 - Throughput – number of recommendations per second

Variations and Optimizations

- Similarity measure
- Significance weighting
- Item rating variance
- Neighborhood selection
- Combine neighborhood ratings
Similarity Measures

- Pearson Correlation
- Spearman Correlation
- Cosine similarity
- Entropy
- Mean-squared-difference
- ...

Significance Weighting

Weight users in addition to the similarity measure

\[w = \begin{cases}
1 & n \geq 50 \\
\frac{n}{50} & n < 50
\end{cases} \]

where \(n \) is the number of items rated by both users.

Item Rating Variance

- Some items are more telling about tastes than others
 - E.g. “Sleepless in Seattle” is more telling about taste than “Titanic”
 - Give more weight to items with high variance in ratings

Neighborhood Selection

- Select a subset of users for better performance and accuracy
 - Correlation threshold
 - Best \(n \) neighbors

Combine Neighborhood Ratings

- Weighted average
- Deviation from mean
- Weighted average of z-scores

And The Winners Are ...

- Similarity measure
 - Pearson Correlation
 - Spearman Correlation
- Significance weighting
- Neighborhood selection
 - Best \(n \) neighbors with \(n=20 \)
- Combine neighborhood ratings
 - Deviation from mean
Other Recommendation Algorithms

- Combine collaborative and content-based filtering
- Item-item collaborative filtering
- Bayesian networks
- ...

Some Libraries

- Taste – http://taste.sourceforge.net/
- COFE – http://eecs.oregonstate.edu/iis/CoFE/
- And more – http://en.wikipedia.org/wiki/Collaborative_filtering#Software_libraries

Non-personalized Recommendation

- What if the user is new to the site?
- What if the site itself is new, i.e. no previous user transactions?

Sales Transactions

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Transaction Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>Beef, Chicken, Milk</td>
</tr>
<tr>
<td>t2</td>
<td>Beef, Cheese</td>
</tr>
<tr>
<td>t3</td>
<td>Cheese, Boots</td>
</tr>
<tr>
<td>t4</td>
<td>Beef, Chicken, Cheese</td>
</tr>
<tr>
<td>t5</td>
<td>Beef, Chicken, Clothes, Cheese, Milk</td>
</tr>
<tr>
<td>t6</td>
<td>Chicken, Clothes, Milk</td>
</tr>
<tr>
<td>t7</td>
<td>Chicken, Milk, Clothes</td>
</tr>
</tbody>
</table>

Amazon-like recommendation:
Users who purchased milk also purchased the following items:
- Clothes
- Chicken

Association Rule Mining

- \(\{i_1, i_2, \ldots, i_n\} \rightarrow j \)
- Confidence: the probability of finding item \(j \) in a transaction that has \(\{i_1, i_2, \ldots, i_n\} \)
- Support: the number of transactions that have \(\{i_1, i_2, \ldots, i_n\} \) and \(j \)

A-Priori Algorithm

- Observation: A set of items \(X \) has support \(s \), then each subset of \(X \) must have support at least \(s \).
- Example: find the association rules that have at least 20% support and 50% confidence
Item Similarity under Vector-Space Model

- Each unique term is a dimension
- Each document is a vector
- Similarity
 - Euclidean distance
 - Cosine similarity measure

References