Three Important Operations of Collection Classes

- Insert
- Remove
- Search

Time Complexities of List Operations

<table>
<thead>
<tr>
<th></th>
<th>ArrayList</th>
<th>LinkedList</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>Best-case</td>
<td>Best-case</td>
</tr>
<tr>
<td></td>
<td>Worst-case</td>
<td>Worst-case</td>
</tr>
<tr>
<td>Remove</td>
<td>Best-case</td>
<td>Best-case</td>
</tr>
<tr>
<td>Search</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Can we design a data structure with $O(\log N)$ \textit{insert}, \textit{remove}, and \textit{search}?

Tree

- A tree is a finite set of nodes
 - The set could be empty
 - When the set is not empty
 - There is a specially designated node called root
 - The remaining nodes are partitioned into zero or more disjoint sets, where each of these sets is also a tree
... Tree Examples

Terminology

- node, edge
- root, leaf, subtree
- parent, child, sibling
- ancestor, descendant
- The degree of a node is the number of its subtrees
- The degree of a tree is the maximum degree of the nodes in the tree

More Terminology

- A path from node n_1 to n_k is a sequence of nodes $n_1, n_2, ..., n_k$ where n_i is the parent of n_{i+1} for $1 \leq i < k$
- Length of a path is the number of edges on the path
- Height and depth of a node
- Height of the tree is the length of the longest path from root to a leaf

Representing a Tree ...

Binary Search Tree (BST)

- A binary tree – a tree with degree 2
- Each node has a value
- The left subtree of a node contains only values less than the node’s value.
- The right subtree of a node contains only values greater than the node’s value.

... Representing a Tree

```java
class TreeNode {
    Object data;
}
```
A BST Example

There is an error in the example. Where is it??

```
public class BSTreeNode {
    ?? value;
    BSTreeNode left, right;
}
```

BSTreeNode class

```
public class BSTreeNode {
    ?? value;
    BSTreeNode left, right;
}
```

BSTree Class

- void insert(Comparable o)
- Comparable remove(Comparable o)
- Comparable find(Comparable o)
- Comparable min()
- Comparable max()
- void print() // traversal
- void clear()
- boolean isEmpty()

Insert

Insert 37, 44, 42 ??

Handling Duplicates

- Ignore them
- Keep frequency at node
- Keep a list of duplicates at node

Remove

- A node with no child
- A node with one child
- A node with two children
Remove – Case 1

Remove – Case 2

Remove – Case 3

Remove – Case 3

Traversals

- Preorder
 - this, left, right
- Postorder
 - left, right, this
- Inorder
 - left, this, right

Exercise

- find()
- min()
- max()
Traversals Examples

Preorder ??
Postorder ??
Inorder ??

Complexities of BST

- Related to the height of the tree
- What's the height of a tree with N nodes??

More About Trees in CS312

- Balanced BST
 - AVL, Red-Black
 - Guarantees $O(\log N)$ for insert, remove, and search
- Trees with higher degrees
 - B-tree
 - Trie
- ...