Buffers in a Computer

- Disk cache
- Memory buffer
- L1, L2, and L3 caches

Why OS Memory Buffer Is Not Enough

- DBMS knows its data better
- Database buffer management must be coordinated with failure recovery mechanisms

Buffer Manager

- A buffer manager is a software component of a DBMS that manages a fixed set of pages, called a buffer pool
- Each page in the buffer pool is called a buffer page
Access Data on Disk

- Other DBMS components (i.e. client code) access data on disk through the buffer manager

```java
// load block #1 into a buffer page
Page page = bufferManager.pin(1);
// read the int value at position 100
int i = page.getint(100);
// set the int value at position 100
page.setint(100, i+10);
// indicate this page is no longer used
bufferManager.unpin(page);
// save the changed data to disk
bufferManager.flush(page);
```

About Disk Access

- Disk access has to go through buffer manager
- Disk access is by block
 - Read
 - Write

Buffer Manager API

- `pin`, `unpin`, `flush`

Pin and Unpin

- Pin
 - Load a block into a buffer page
 - Indicate the buffer page is being used by some client code (i.e. pinned) – *how?*
- Unpin
 - Indicate the buffer page is no longer used by the client (i.e. not pinned, or unpinned)

Four Possible Cases for Pin

- The block to be pinned is already in the buffer pool
 - The buffer is not pinned
 - The buffer is pinned
- The block to be pinned is not in the buffer pool
 - There is at least one unpinned buffer
 - There is no unpinned buffer

Dirty and Flush

- If the data in a page is changed, the page is called a dirty page
- Flush
 - Write a dirty page to disk
- When to flush
 - Before the page is pinned to a different block
 - At the request of the failure recovery mechanism

Example: Buffer Replacement

- Size of buffer pool: 4
- What does the buffer pool looks like after the following requests: `pin(1), pin(2), pin(3), pin(4), unpin(3), unpin(1), unpin(2), pin(5), pin(3)`
Buffer Replacement Policies

- **Naïve**
 - Sequentially scan the buffer pool and replace the first unpinned page
- **Clock**
- **FIFO (First In First Out)**
- **LRU (Least Recently Used)**

Naïve Policy Example ...

After \(\text{pin}(1), \text{pin}(2), \text{pin}(3), \text{pin}(4) \)

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

| pin count: 1 | pin count: 1 | pin count: 1 | pin count: 1 |

... Naïve Policy Example ...

After \(\text{unpin}(3), \text{unpin}(1), \text{unpin}(2) \)

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

| pin count: 0 | pin count: 0 | pin count: 0 | pin count: 1 |

Problem of the Naïve Policy

- \(\text{pin}(1), \text{unpin}(1), \text{pin}(2), \text{unpin}(2), \text{pin}(1), \text{unpin}(1), \text{pin}(2), \text{unpin}(2) \)...

Clock Policy

- Sequentially scan the buffer pool and choose the first unpinned page
- Start the next scan at the page after the previous replacement
Clock Policy Example

After $\text{pin}(1), \text{pin}(2), \text{pin}(3), \text{pin}(4)$

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

Scan start index = 1

Pin count: 1

Implementing FIFO and LRU

- **FIFO**
 - For each buffer page, keeps the time when the block is pinned in

- **LRU**
 - For each buffer page, keeps the time when the page is unpinned

FIFO Policy Example

After $\text{pin}(1), \text{pin}(2), \text{pin}(3), \text{pin}(4)$

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

Pin count: 1

Pin time: 1 Pin time: 2 Pin time: 3 Pin time: 4

LRU Policy Example ...

After $\text{pin}(1), \text{pin}(2), \text{pin}(3), \text{pin}(4)$

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

Unpin time: 6 Unpin time: 7 Unpin time: 5 Unpin time: 4

... LRU Policy Example

After $\text{unpin}(3), \text{unpin}(1), \text{unpin}(2)$

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

Unpin time: 0 Unpin time: 0 Unpin time: 0 Unpin time: 1

Readings

- Chapter 13.4 and 13.5 of the textbook