Buffers in a Computer

- Disk cache
- Memory buffer
- L1, L2, and L3 caches

Why OS Memory Buffer Is Not Enough

- DBMS knows its data better
- Database buffer management must be coordinated with failure recovery mechanisms

Buffer Manager

- A buffer manager is a software component of a DBMS that manages a fixed set of pages, called a buffer pool
- Each page in the buffer pool is called a buffer page
Access Data on Disk

- Other DBMS components (i.e., client code) access data on disk through the buffer manager.

  ```java
  // load block #1 into a buffer page
  Page page = bufferManager.pin(1);
  // read the int value at position 100
  int i = page.getInt(100);
  // set the int value at position 100
  page.setInt(100, i+10);
  // indicate this page is no longer used
  bufferManager.unpin(page);
  // save the changed data to disk
  bufferManager.flush(page);
  ```

Pin and Unpin

- Pin
 - Load a block into a buffer page
 - Indicate the buffer page is being used by some client code (i.e., pinned) – *how??*

- Unpin
 - Indicate the buffer page is no longer used by the client (i.e., not pinned, or unpinned)

Four Possible Cases for Pin

- The block to be pinned is already in the buffer pool
 - The buffer is not pinned
 - The buffer is pinned

- The block to be pinned is not in the buffer pool
 - There is at least one unpinned buffer
 - There is no unpinned buffer

Dirty and Flush

- If the data in a page is changed, the page is called a dirty page

- Flush
 - Write a dirty page to disk

- When to flush
 - Before the page is pinned to a different block
 - At the request of the failure recovery mechanism

Example: Buffer Replacement

- Size of buffer pool: 4
- What does the buffer pool looks like after the following requests: `pin(1), pin(2), pin(3), pin(4), unpin(3), unpin(1), unpin(2), pin(5), pin(3)`

Buffer Replacement Policies

- Naive
 - Sequentially scan the buffer pool and replace the first unpinned page

- Clock

- FIFO (First In First Out)

- LRU (Least Recently Used)
Naïve Policy Example ...

After \textit{pin}(1), \textit{pin}(2), \textit{pin}(3), \textit{pin}(4)

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

pin count: 1 pin count: 1 pin count: 1 pin count: 1

... Naïve Policy Example ...

After \textit{unpin}(3), \textit{unpin}(1), \textit{unpin}(2)

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

pin count: 0 pin count: 0 pin count: 0 pin count: 1

Naïve Policy Example ...

After \textit{pin}(5), \textit{pin}(3)

<table>
<thead>
<tr>
<th>Block 5</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

pin count: 1 pin count: 0 pin count: 1 pin count: 1

Problem of the Naïve Policy

\textbf{◆} \textit{pin}(1), \textit{unpin}(1), \textit{pin}(2), \textit{unpin}(2), \textit{pin}(1), \textit{unpin}(1), \textit{pin}(2), \textit{unpin}(2)...

Clock Policy

\textbf{◆} Sequentially scan the buffer pool and choose the first unpinned page
\textbf{◆} Start the next scan at the page after the previous replacement

Clock Policy Example

After \textit{pin}(1), \textit{pin}(2), \textit{pin}(3), \textit{pin}(4)

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

pin count: 1 pin count: 1 pin count: 1 pin count: 1

scan start index=1
Implementing FIFO and LRU

FIFO
- For each buffer page, keeps the time when the block is pinned in

LRU
- For each buffer page, keeps the time when the page is unpinned

FIFO Policy Example

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

- After pin(1), pin(2), pin(3), pin(4)
- Pin count: 1, 1, 1, 1
- Pin time: 1, 2, 3, 4

LRU Policy Example

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td>Page 2</td>
<td>Page 3</td>
<td>Page 4</td>
</tr>
</tbody>
</table>

- After pin(1), pin(2), pin(3), pin(4)
- Pin count: 1, 1, 1, 1
- Pin time: 1, 2, 3, 4

Readings

- Chapter 13.4 and 13.5 of the textbook