Clustering

- Group similar objects together
- Applications
 - Identify users who share similar interests
 - Automatically generate concept hierarchies
 - Reduce algorithmic complexity
 - ...

Types of Clusters

- Well separated
- Prototype based
- Contiguity based
- Density based
- Conceptual clusters

Well-separated Clusters

- Each point is closer to all of the points in its cluster than to any point in another cluster

Prototype-based Clusters

??

Contiguity-based Clusters

??

A cluster can be considered as a connected component in a graph
Density-based Clusters

A cluster is a dense region of objects surrounded by a region of low density

Conceptual Clusters

A cluster is a set of objects that share some property

Types of Clustering

- Partitional vs. Hierarchical
- Exclusive vs. Overlapping vs. Fuzzy
- Complete vs. Partial

Similarity Measure

<table>
<thead>
<tr>
<th>TID</th>
<th>Home Owner</th>
<th>Marital Status</th>
<th>Annual Income</th>
<th>Defaulted Borrower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
</tbody>
</table>

Is #1 more similar to #2 or #3?

Interval-Scaled Attributes

- Continuous-valued data measured with a linear scale (vs. exponential or logarithmic scale)

Distance Measures

- $\mathbf{X} = (x_1, x_2, \ldots, x_n)$ and $\mathbf{Y} = (y_1, y_2, \ldots, y_n)$
- E.g. $(1, 2)$ and $(3, 5)$

 - Euclidean Distance: $\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$
 - Manhattan Distance: $\sum_{i=1}^{n} |x_i - y_i|$
Minkowski Distance

\[dist(X, Y) = \sqrt[p]{\sum_{i=1}^{n} |x_i - y_i|^p} \]

- \(p=1 \) (Manhattan Distance)
 - a.k.a. L\(_1\) norm or L\(_1\) distance
- \(p=2 \) (Euclidean Distance)
 - a.k.a. L\(_2\) norm or L\(_2\) distance

Requirements of Distance Functions

- \(\text{dist}(X, Y) \geq 0 \)
- \(\text{dist}(X, X) = 0 \)
- \(\text{dist}(X, Y) = \text{dist}(Y, X) \)
- \(\text{dist}(X, Y) \leq \text{dist}(X, Z) + \text{dist}(Z, Y) \)
 - Triangular Inequality

Problem of Units

- (10m, 2km) and (5m, 2.1km)?
- (10m, 200lb) and (5m, 210lb)?

Standardize Interval-Scaled Attributes

- Given attribute A with values \(a_1, a_2, ..., a_n \)
 - Mean: \(\bar{a} = \frac{1}{n} \sum_{i=1}^{n} a_i \)
 - Mean absolute deviation: \(\frac{1}{n} \sum_{i=1}^{n} |a_i - \bar{a}| \)
 - Standardized measurement (z-score): \(z_i = \frac{a_i - \bar{a}}{s} \)

Binary Attributes

- Symmetric
 - E.g. gender
- Asymmetric
 - E.g. HIV test result

Contingency Table for Binary Attributes

\[
\begin{array}{ccc}
\text{Record } Y & 1 & 0 \\
\text{Record } X & q & r & s & t \\
\end{array}
\]

- Example
 - \(X=(1,1,0,0,0,0), Y=(0,1,0,1,0,1,0) \)
Distance Measure for Symmetric Binary Attributes

Similarity: \(sim(X, Y) = \frac{q + t}{q + r + s + t} \)

Dissimilarity: \(dist(X, Y) = \frac{r + s}{q + r + s + t} \)

Distance: \(dist(X, Y) \)

Distance Measure for Asymmetric Binary Attributes

Similarity (Jaccard Coefficient): \(sim(X, Y) = \frac{q}{q + r + s} \)

Dissimilarity: \(dist(X, Y) = \frac{r + s}{q + r + s} \)

Distance: \(dist(X, Y) \)

Binary Attribute Example

<table>
<thead>
<tr>
<th>TID</th>
<th>Gender</th>
<th>Fever</th>
<th>Cough</th>
<th>Test-1</th>
<th>Test-2</th>
<th>Test-3</th>
<th>Test-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

\(dist(1,2) \), \(dist(2,3) \), \(dist(3,1) \)

Categorical Attributes

\(\text{Example} \)
- Marital status: single, married, divorced
- \(dist(X, Y) = \frac{(p - m)}{p} \)
 - \(m \): number of attribute matches
 - \(p \): total number of attributes
- Or, encode each state with a binary attribute

Ordinal Attributes

\(\text{Example} \)
- Grade: F, D, C, B, A
- Given an attribute with \(M \) possible values \(\{1, 2, \ldots, M\} \), map value \(a \) to the range of \([0.0, 1.0] \)

\(z = \frac{a - 1}{M - 1} \)

Records with Mixed Types of Attributes ...

\(dist(X, Y) = \frac{\sum_{i=1}^{n} c_i \cdot dist(x_i, y_i)}{\sum_{i=1}^{n} c_i} \)

\(c_i \) is the weight of the \(i \)-th attribute \(a_i \)’s contribution toward the overall distance
- 0 if \(x_i \) or \(y_i \) is missing, or \(a_i \) is asymmetric binary and \(x_i \neq y_i \)
- 1 otherwise
... Records with Mixed Types of Attributes

dist(xᵢ, yᵢ)
- Interval-based: \(|xᵢ - yᵢ| / (\text{max}(aᵢ) - \text{min}(aᵢ))\)
- Binary or categorical: 0 if \(xᵢ = yᵢ\); 1 otherwise
- Ordinal: treat as interval-based using \(zᵢ\)

Other Distance Measures

- Cosine distance
- Tanimoto distance
- ...
- Weighted distance

K-Means

- Input: dataset D and number of clusters k
- Algorithm
 1. Randomly choose k objects as cluster centers
 2. Assign each object to the closest cluster center
 3. Update each cluster center
 4. Repeat 2 until there is no reassignment occurs

K-Means Example

Key Issues in K-Means

- Distance measure?
 - Euclidean, Manhattan, Cosine ...
- Cluster center?
 - Mean, median

Need for Objective Function

- The best clustering is the one that minimize the "errors" defined by an objective function
Notations

- \(D \): Dataset
- \(k \): The number of clusters
- \(C_i \): \(i \)th cluster
- \(c_i \): The center of the \(i \)th cluster
- \(x \): An object

Objective Functions

Sum of the Squared Error (SSE):

\[
SSE = \sum_i \sum_x \text{dist}_{i,c}(x,c)^2
\]

Sum of the Absolute Error (SAE):

\[
SAE = \sum_i \sum_x \text{dist}_{i,c}(x,c)
\]

Minimize an Object Function

Example:
- One dimensional data
- One cluster
- SSE

\[
SSE(c) = \sum_x (c - x)^2 \quad \implies \quad \frac{\partial}{\partial c} SSE(c) = 0
\]

Distances, Centroids, and Objective Functions

<table>
<thead>
<tr>
<th>Distance Function</th>
<th>Centroid</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manhattan ((L_1))</td>
<td>Median</td>
<td>Sum of (L_1) distance</td>
</tr>
<tr>
<td>Squared Euclidean ((L_2))</td>
<td>Mean</td>
<td>Sum of squared (L_2) distance</td>
</tr>
<tr>
<td>Cosine</td>
<td>Mean</td>
<td>Sum of cosine distance</td>
</tr>
<tr>
<td>Bregman Divergence</td>
<td>Mean</td>
<td>Sum of Bregman divergence</td>
</tr>
</tbody>
</table>

Another K-Means Example ...

... Another K-Means Example
Dealing with the Problem of Initial Centroid Selection

- Perform several runs of K-Means and select the clustering with the smallest SSE
 - Not as effective as you would think, especially with large k (why??)
- Use a hierarchical clustering algorithm on a sample to get K initial clusters
- Select centroid one by one, and each one is the farthest away from previously selected ones

Postprocessing

- Escape local SSE minima by performing alternate clustering splitting and merging

Postprocessing – Splitting

- Splitting the cluster with the largest SSE on the attribute with the largest variance
- Introduce another centroid
 - The point that is farthest from current centroids
 - Randomly chosen

Postprocessing – Merging

- Disperse a cluster and reassign its objects
- Merge two clusters that are closest to each other

Bisecting K-Means

1. Initial a list of clusters with one cluster containing all the objects
2. Choose one cluster from the list
3. Split the cluster into two using basic K-Means, and add them back to the list
4. Repeat Step 2 until k clusters are reached
5. Perform one more basic K-Means using the centroids of the k clusters as initial centroids

About Bisecting K-Means

- Step 2
 - Choose the largest cluster
 - Choose the cluster with the largest SSE
- Step 3
 - Perform basic K-Means several times and choose the clustering with the smallest SSE
- Less susceptible to initialization problems
 - Why??
Handling Empty Clusters

- Choose a replacement centroid
 - The point that's farthest away from any current centroid
 - A point from the cluster with the highest SSE

Limitations of K-Means

- Only handles well-separated, spherical-shaped clusters well
- Problem with outliers
- Requires the notion of centroid

Limitations of K-Means – Different Types of Clusters

- Continuity-based
- Density-based

K-Medoids

- Instead of using mean/centroid, use medoid, i.e. representative object
- Objective function: sum of the distances of the objects to their medoid
- Differs from K-Means in how the medoids are updated
PAM (Partition Around Medoids)

1. Randomly choose \(k \) objects as initial medoids
2. For each non-medoid object \(x \)
 - For each medoid \(c_i \)
 - Calculate the reduction of the total distance if \(c_i \) is replaced by \(x \)
3. Replace the \(c_i \) with \(x \) that results in maximum total distance reduction
4. Repeat Step 2 until the total distance cannot be reduced
5. Assign each object to its closest medoid

PAM Example

K-Means vs. K-Medoids

- Requires the notion of mean/centroid
- More susceptible to outliers
- \(\mathcal{O}(kn) \) per iteration
- Works for all distance measures
- Less susceptible to outliers
- ?? per iteration

Hierarchical Clustering

- Agglomerative
 - Start with each object as a cluster
 - Recursively pick two clusters to merge
- Divisive
 - Start with all objects as a single cluster
 - Recursively pick one cluster to split

Agglomerative Hierarchical Clustering

1. Compute a distance matrix
2. Merge the two closest clusters
3. Update the distance matrix
4. Repeat Step 2 until only one cluster remains

Distance Between Clusters

- Min distance
 - Distance between two closest objects
 - Min < threshold: Single-link Clustering
- Max distance
 - Distance between two farthest objects
 - Max < threshold: Complete-link Clustering
- Average distance
 - Average of all pairs of objects from the two clusters
Centroid-based Distance

- Mean distance
- Increased SSE (Ward’s Method)

Min Distance Clustering Example ...

... Min Distance Clustering Example

Max Distance Clustering Example

Average Distance Clustering Example

Ward’s Clustering Example
About Hierarchical Clustering

- Produces a hierarchy of clusters
- Lack of a global objective function
- Merging decisions are final
- Expensive
- Often used with other clustering algorithms

BIRCH

- Balanced Iterative Reducing and Clustering using Hierarchies

Clustering Feature (CF)

- \(\text{CF} = \langle N, \text{LS}, \text{SS} \rangle \)

 - \(N \): number of objects
 - \(\text{LS} \) (Linear Sum):
 \[\text{LS} = \sum_{i=1}^{N} x_i \]
 - \(\text{SS} \) (Square Sum):
 \[\text{SS} = \sum_{i=1}^{N} x_i^2 = \sum_{i=1}^{N} x_i \cdot x_i \]

CF Tree

CF Tree Construction – Input

- Dataset
- Threshold Condition
 - Diameter \(D \) of a cluster < \(d \)

 Centroid:

 \[x = \frac{\sum_{i=1}^{N} x_i}{N} \]

 Radius:

 \[R = \sqrt{\frac{\sum_{i=1}^{N} (x_i - x)^2}{N}} \]

 Diameter:

 \[D = \sqrt{\frac{\sum_{i=1}^{N} (x_i - x)^2}{N(N-1)}} \]

CF Tree Construction – Insert

- Insert an object into its closest cluster in a leaf node
 - The object is inserted if the resulting cluster does not violate the threshold condition
 - Otherwise, the object is inserted as a cluster by itself
- When a node is full, split it and rebalance the tree (similar to B+ Tree Insertion)
CF Tree Howto’s

- Find closest cluster
 - Object-to-cluster distance
- Insert object into a cluster
 - Update CF
 - Check threshold condition
 - Calculate diameter
- Split node and rebalance tree
 - Merge clusters that are close to one another
 - Cluster-to-cluster distance; calculate CF of the merged cluster

Diameter Calculation

- Calculate diameter using CF

\[
D = \sqrt{\frac{2N \cdot SS - 2LS^2}{N(N - 1)}}
\]

Diameter Calculation Example

- A cluster with three 1-D objects
 - \(x_1 = (x_1) \)
 - \(x_2 = (x_2) \)
 - \(x_3 = (x_3) \)

Cluster-to-Cluster Distances

- Cluster-to-cluster distances that can be calculated using CF
 - \(D_0 \): centroid Euclidean distance
 - \(D_1 \): centroid Manhattan distance
 - \(D_2 \): average inter-cluster distance
 - \(D_3 \): average intra-cluster distance
 - \(D_4 \): variance increase distance

About BIRCH

- Single scan of data
 - CF tree is kept in memory
 - Size of the CF tree can be adjusted using the threshold value
- Cluster the leaf node clusters
 - More natural clusters
 - Sparse clusters detected as outliers
- Require the notion of centroid

DBSCAN

- Density-Based Spatial Clustering of Applications with Noise
- A density-based clustering algorithm
Classification of Points

Given a radius e and the minimum number of points MinPts within a radius of e (e-neighborhood)
- Core point
 - Has more points in its e-neighborhood than MinPts
- Border points
 - Within the e-neighborhood of a core point
- Noise points

The DBSCAN Algorithm

- Label all points as core, border, or noise
- Remove all noise points
- Put an edge between all core points that are within e of each other
- Make each connected group of core points a cluster
- Assign border points to one of the clusters of their associated core points

Select DBSCAN Parameters

- k-dist: distance to the kth nearest neighbor
- $k=4$ is usually reasonable for most 2-D datasets

More DBSCAN Examples
About DBSCAN

- Handle clusters with arbitrary shapes and sizes
- Limitations
 - Clusters with varying densities
 - High dimensional data
- Could be expensive because of nearest neighbor computation
 - Use a spatial index structure like R tree or k-d tree

Other Clustering Algorithms

- More efficient
 - Speed
 - Scalability
- High dimensional data
- Constraint-based

Cluster Evaluation

- a.k.a. *Cluster Validation*
 - Unsupervised
 - Using no external information other than the data itself
 - Supervised
 - With external information such as given class labels

Reasons Not To Evaluate

- Clustering is often used as part of exploratory data analysis
- Clustering is often used as part of other algorithms
- Clustering algorithms, in some sense, define their own types of clusters

Reasons To Evaluate ...

... Reasons To Evaluate
Quality (Validity) of Clusters

- **Cohesion**: Compactness of a cluster
- **Separation**

Validity of Prototype-based Clusters

\[\text{cohesion}(C_i) = \sum_{x \in C_i} \text{dist}(x, c_i) \]

\[\text{separation}(C_i, C_j) = \text{dist}(c_i, c_j) \]

\[\text{separation}(C_i) = \text{dist}(c_i, c) \]

Validity of Graph-based Clusters

\[\text{cohesion}(C_i) = \sum_{\substack{x, y \in C_i \setminus \{c_i\}}} \text{dist}(x, y) \]

\[\text{separation}(C_i, C_j) = \sum_{\substack{x \in C_i \setminus \{c_i\}, y \in C_j \setminus \{c_j\}}} \text{dist}(x, y) \]

Validity of A Clustering

\[\text{validity}(C_i) = \frac{1}{|C_i|} \cdot \text{validity}(C_i) \]

Cluster Weights

<table>
<thead>
<tr>
<th>Validity Measures</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\sum_{\substack{x, y \in C_i \setminus {c_i}}} \text{dist}(x, y)]</td>
<td>[\frac{1}{</td>
</tr>
<tr>
<td>[\sum_{x \in C_i \setminus {c_i}} \text{dist}(x, c_i)]</td>
<td>[1]</td>
</tr>
<tr>
<td>[\text{dist}(c_i, c)]</td>
<td>[</td>
</tr>
</tbody>
</table>

Silhouette Coefficient

- **For the \(i \)th object in a cluster**
 - \(a_i \): average distance to all other objects in the cluster
 - \(b_i \): minimum of the average distance to the objects in a cluster that does not contain this object

\[s_i = \frac{(b_i - a_i)}{\max(a_i, b_i)} \]
About Silhouette Coefficient

- Range of s_i??
- What is a "good" value of s_i??
- Quality of a cluster: average s_i
- Quality of a clustering: average s_i

Similarity Matrix

- Sort the objects by cluster label
- Similarity Matrix M
 - $M(i,j) = \text{similarity}(x_i, x_j), 0 \leq M(i,j) \leq 1$

Visualizing Clustering Results Using Similarity Matrix

(a) Well-separated clusters.

(b) Similarity matrix sorted by Euclidean cluster labels.

Determine The Correct Number of Clusters ...

... Determine The Correct Number of Clusters

Clustering Tendency

- Do clusters exist in the first place?
- Determine clustering tendency
 - Cluster first, then evaluate the quality of the clustering
 - Need to try several different types of clustering algorithms
 - Statistical tests for spatial randomness
Hopkins Statistic

- Generate \(p \) random points in the data space
 - \(u_i \): distance of a randomly generated point to its nearest neighbor in the original dataset
- Select \(p \) random points from the original dataset
 - \(w_i \): distance of a randomly selected point to its nearest neighbor in the original dataset
- Interpretation of Hopkins Statistic:
 \[
 H = \frac{\sum w_i}{\sum u_i + \sum w_i}
 \]

Supervised Measures of Cluster Validity

- Classification-oriented measures
 - Evaluate the extent to which a cluster contains the objects of a single class
- Similarity-oriented measures
 - Evaluate the extent to which two objects of the same class (or cluster) belong to the same cluster (or class)

Classification-oriented Measures

- Entropy
- Purity
- Precision, recall, F-measure

Similarity-oriented Measures

<table>
<thead>
<tr>
<th></th>
<th>Same class</th>
<th>Different class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same class</td>
<td>(f_{11})</td>
<td>(f_{10})</td>
</tr>
<tr>
<td>Different class</td>
<td>(f_{01})</td>
<td>(f_{00})</td>
</tr>
</tbody>
</table>

... Similarity-oriented Measures

- Rand Statistic:
 \[
 R = \frac{f_{10} + f_{01}}{f_{00} + f_{10} + f_{11}}
 \]
- Jaccard Coefficient:
 \[
 J = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}
 \]

Summary

- Types of clusters
- Types of clustering
- Similarity measures
- Clustering algorithms
 - Partitional: K-Means, K-Mediods
 - Hierarchical: Agglomerative, BIRCH
 - Density-based: DBSCAN
- Clustering evaluation
 - Unsupervised and supervised